Mechanism of Selective Oxidation and Ammoxidation of Propene on Bismuth Molybdates from DFT Calculations on Model Clusters
نویسنده
چکیده
In this paper, we use first principles quantum mechanical methods (B3LYP flavor of Density Functional Theory) to examine the mechanism of selective oxidation and ammoxidation of propene by BiMoOx catalysts. To do this, we use finite clusters chosen to mimic likely sites on the heterogeneous surfaces of the catalysts. We conclude that activation of the propene requires a Bi(V) site, whereas all subsequent reactions involve di-oxo Mo(VI) sites adjacent to the Bi. We find that two such Mo sites are required for the most favorable reactions. These results are compatible with current experimental data. For ammoxidation, we conclude that ammonia activation would be easier on Mo(IV) rather than on Mo(VI). Ammonia would be activated more easily for more reducing condition. Because ammonia and propene are reducing agents, higher partial pressures of them could accelerate the ammonia activation. This is consistent with the kinetic model of ammoxidation proposed by Grasselli and co-workers that imido sites (ModNH) are more abundant in higher partial pressures of feed. Our calculations also indicate that allyl groups produced as a result of the hydrogen abstraction from propenes would be adsorbed more easily on imido groups (ModNH) than on oxo groups (ModO) and that the spectator oxo effect is larger than spectator imido effect. Thus, we propose that the best site for ammoxidation (at least for allyl adsorption) is the imido group of the “oxo-imido” species.
منابع مشابه
Selective oxidation and ammoxidation of propene on bismuth molybdates, ab initio calculations
In this paper we use first principles quantum mechanical methods (B3LYP flavor of density functional theory) to examine the mechanism of selective oxidation and ammoxidation of propene by BiMoOx catalysts. To do this we use finite clusters chosen to mimic likely sites on the heterogeneous surfaces of the catalysts. We conclude that activation of the propene requires a Bi(V) site while all subse...
متن کاملProtonation of Propene on Silica-Grafted Hydroxylated Molybdenum and Tungsten Oxide Metathesis Catalysts: A DFT Study
Theoretical assessment of the protonation reaction in the activation of propene on hydroxylated Mo(VI) and W(VI) metathesis catalysts is presented in this paper using the density functional theory calculations and five support clusters varying from simple SiO4H3 clusters to a large Si4O13H9 cluster. The bond distances and thermochemical...
متن کاملMesostructural Bi-Mo-O catalyst: correct structure leading to high performance
Structure-activity relationship has been one of the main topics of research on catalysts all the time. Component and structure are the two moieties governing the performance of solid materials as catalysts. Multicomponent bismuth molybdates are well known catalysts for propene oxidation but pure crystalline phases of bismuth molybdate are inactive for the reaction. We have designed mesostructur...
متن کاملH2 Elimination and C-C Bond Cleavage of Propene: A Theoretical Research
Propene dissociation channels were characterized by ab initio CCSD(T)/6-311++g(d,p) calculations. Inthis work the detailed mechanism of propene dissociation to C2H4+CH2, C2H2+H+CH3, C2H2+CH4 andC3H3+H2+H have been investigated. According to our calculations, ten fragments can be classified intofive dissociated channels. Our results point out that two mechanisms come into play in the H2 eliminat...
متن کاملOrtho-phenylenediamine Based Bis-ureas as the Ion Selective Sensors; A QM/MD Study
Density functional theory dispersion corrected (DFT-D3)calculations and molecular dynamic (MD) simulation were applied to investigate the sensing ability of four types of receptors (RCs) composed of the ortho-phenylenediamine based bis-ureas for selective complexation with the anions such as Cl–, Br–, OAC–, PhCO2–, H2PO4– and HSO4– in the gas phase and DMSO. On the basis of the data obtained fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002